
COMPUTER ARCHITECTURE LAB 4 - ASYNCHRONOUS CIRCUIT DESIGN

JON TSE AND MEL CHUA

Part 1. Background reading

1. WHAT IS ASYNCHRONOUS LOGIC?

As the name implies, asynchronous logic is a descriptor that can be applied to any circuit design
that does not use a clock. Synchronous circuits reside in the time domain, evaluating signals
at a specific time for a given duration when prompted by an external clock. Asynchronous
circuits reside in the sequence domain, evaluating signals from event to event when prompted
by computational completion. In other words, a synchronous circuit has its activity dictated by
its clock, whereas an asynchronous one has its activity dictated via local negotiation; it proceeds
if activities have just been completed.

2. WHAT ARE THE ADVANTAGES OF ASYNCHRONOUS LOGIC?

Synchronous circuits are easy to design and understand, since the clock cycle automatically re-
solves possible hazards by giving the circuit enough time to settle into its desired state, meaning
signal noise during transitions does not need to be accounted for. No such luxury is available
in asynchronous design, making it conceptually more difficult. However, asynchronous circuits
have several advantages that occasionally make this increased complexity worthwhile.

2.1. They can be faster. Since all components on a synchronous circuit proceed simultaneously
on a clock edge, all components are limited by the speed of the slowest one among them, as the
clock cycle must be long enough to allow the longest computation or path to resolve. In contrast,
data-driven asynchronous circuits proceed whenever they are able to do so, allowing for average-
case rather than worst-case performance.

2.2. Local optimization yields results. Continuing on with the previous point, if some com-
ponents of an asynchronous circuit take much longer to resolve than others, the speeds of the
faster components are not restricted by the speeds of the slower ones if the two operate indepen-
dently. Because of this, one can afford to leave sections of their circuit unoptimized; if a feature
is used rarely, it may be all right for it to run slowly. Conversely, improvements to the speed of
any subsection will result in improvements to the speed of the entire circuit. In contrast, any
upgrades to a synchronous circuit are ineffective unless the worst-common-denominator clock
time is improved; the speed of the entire circuit depends on its slowest subsystem, no matter
how infrequently it is used.1

1If the fastest component depends on input data coming from the slowest one, then the fastest component will still
have to wait for the slowest. The important point to note is that a component’s speed is now limited only by how fast it,
the components providing input to it, and the components receiving output from it can go; it is completely independent
of the maximum speed of the rest of the components.

1

COMPUTER ARCHITECTURE LAB 4 - ASYNCHRONOUS CIRCUIT DESIGN 2

2.3. Low power consumption. All parts of a synchronous circuit, whether they are actually
doing useful computation or not, must continuously be powered to listen for the clock edge. In
contrast, asynchronous components can be turned off when not in use and switched on with the
arrival of data. The result is that all power consumption goes directly towards useful computation
instead of waiting for useful computation to happen.(author?) [1] This is particularly important,
because low power consumption also means low power dissipation. With today’s high speed
processors, power dissipation is a mounting concern, especially now that we have reached the
maximum heat dissipation of our ceramic chip technologies. By using asynchronous chip design,
we might be able to get some more mileage out of our current chip and heat sink technologies,
especially because asynchronous circuits differ from synchronous circuits at the gate layout
level, not at the silicon level. Because of this, we can use current chip fabrication technologies
to manufacture asynchronous chips.

2.4. Low noise and interference. Since only the necessary components of an asynchronous cir-
cuit will be activated at any given time, the amount of noise and electromagnetic radiation emitted
by an asynchronous circuit will be considerably lower than that of a synchronous one.(author?)
[2] This can be used to one’s advantage (or disadvantage) when designing the physical layout of
an asynchronous circuit.

2.5. No clock skew. Clock skew occurs when the clock signal takes different amounts of time
to propagate to different sections of a circuit. In other words, the synchronous circuit is thrown
out of synchronization. Asynchronous circuits don’t don’t have a clock, and thus do not suffer
from clock signal propagation issues.(author?) [2]

2.6. Truly modular design. Asynchronous modules are truly modular. Assuming they present
the proper input and output interfaces, , they can just be inserted into your circuit without any
worries of whether their timing will be accurate. Because asynchronous circuits are not tied to
a particular clock cycle, you will not have any timing problems adding the new module to your
circuit.]

2.7. Automatically reacts to the outside world. Circuits, being physical things, are suscepti-
ble to external physical effects such as temperature changes. IN particular, increasing temper-
ature tends to decrease the speed of a circuit, but because asynchronous circuits don’t have a
regulating clock signal, they can automatically adjust their speed to respond to external con-
ditions such as temperature. Wikipedia legend has it that the first public demonstration of
asynchronous logic at the California Institute of Technology featured a simple pulsing chip and
a cup of coffee. When the hot coffee was placed atop the chip, the output automatically slowed
to compensate for the heated transistors. When the coffee was removed, the output immediately
sped up again.(author?) [1] When liquid nitrogen was poured over the chip, it sped up still more.
In synchronous circuits, these temperature changes would adversely affect the response times
of the individual circuit modules.

2.8. Robust mutexing and handling of external inputs. The real world, by nature, is asyn-
chronous. Natural events happen in response to other events, not to the beat of some giant
godlike clock2; there is no guarantee that an external signal will occur on a regular basis, within
a set time period, or even at all. Synchronous circuits require all changes to occur within a
finite amount of time, so mutexes3 that extend beyond that finite amount of time can fail. Since
the corresponding asynchronous circuit is dependent on computational completion only, it can
wait an arbitrarily long amount of time between signals, such as those coming from the external
world. This makes it ideal for sensor networks.(author?) [6]

2The authors, at least, have never heard of an organized religion that describes their deity as occurring every
.001microseconds.

3Mutexes are algorithms that control concurrent access to shared hardware, and often can rely on a clock.

COMPUTER ARCHITECTURE LAB 4 - ASYNCHRONOUS CIRCUIT DESIGN 3

2.9. Be on the bleeding edge. Not much work has been done on asynchronous logic com-
pared to the body of knowledge that exists for synchronous logic. There are relatively few design
methodologies available and even fewer CAD tools; the subject is in effect an uncharted wilder-
ness looking for explorers. In the realization that synchronous circuits may someday be unable to
keep up with our growing need for speed and power efficiency, many researchers and companies
have begun their own strides into this territory.

3. WHAT ARE THE DISADVANTAGES OF ASYNCHRONOUS LOGIC?

Asynchronous circuits are difficult to design.(author?) [1] Synchronous circuits are traditionally
created by computing the appropriate boolean truth tables, slapping in latches for implementa-
tion, and relying on a long-enough clock cycle to iron out the transitions. Of course this ignores
the requisite Karnaugh map based simplification and tweaking. In any case, with asynchronous
design, the designer must watch all the transitions that occur to ensure that the system’s dy-
namic state is always stable. Several design methodologies have been developed to aid in the pro-
cess, but there are very few CAD tools available to support these methodologies, so researchers
are often faced with a lack of tools to work with4. Finally, asynchronous circuits are usually
considerably more complex than the corresponding synchronous circuits for a given task. The
added complexity can be enough to eliminate the speed advantage discussed in the previous sec-
tion, and in fact may be considerable enough to make the asynchronous circuit slower than its
synchronous counterpoint.(author?) [7] The added complexity also makes asynchronous circuits
very difficult to test, but new testing methodologies and self-testing circuits have been developed
to address this problem.(author?) [9]

4. MODELS AND DESIGN METHODOLOGIES

Several different models have been invented to simplify the problem of asynchronous circuit
design. A detailed treatment of this subject is beyond the scope of this paper, but this section
will attempt to give a brief overview of some of the more common design methodologies that will
be useful to you in this lab. Suggested resources are listed in the references section at the end of
this paper. It is important to note that a given circuit may use one or more of these methodologies
at once.

4.1. Bounded delays - FSM-based solutions. In the bounded delay model, developed by D.A.
Huffman, a maximum delay length or a range of delay lengths for the circuit is specified. This
makes it very similar to the traditional design methodology of synchronous circuits, which have
a fixed delay length, which in turn makes this the easiest way to design asynchronous circuits
using existing tools. Circuit logic is listed in flow tables, which are essentially truth tables with all
possible states listed for each combination of inputs; stable states in each cell are denoted with
a circle. The logic can then be optimized via Karnaugh maps and other traditional synchronous
design tools. (author?) [1]

The circuit can also be described as an asynchronous finite state machine (AFSM) with stable
states as nodes and intermediate states listed along the transitions between nodes.(author?) [2]
The circuit must then be designed to fire only during stable states. All hazards, or potentially
error-causing temporary transitions, must be removed, meaning more circuit components must
be included; one common method of doing this is to insert buffers such that all parallel logic
paths will take the same amount of time to execute. This makes the circuit operate almost as if
it had an external clock, at least as far as each set of parallel logic paths is concerned.

4One notable CAD tool is Balsa, an asynchronous circuit synthesis system developed by the University of Manchester.
We will be using Balsa in this lab.

COMPUTER ARCHITECTURE LAB 4 - ASYNCHRONOUS CIRCUIT DESIGN 4

4.1.1. Problems with the simple bounded-delay model. While it may be the most straightforward
of the design methodologies, usage of the bounded delay model has some serious disadvantages.
The first is oversimplification; asynchronous circuits are far more complex than finite state ma-
chines. In a true asynchronous circuit, multiple signals will be changing in parallel, but in a
finite state machine, only one signal can change at a time. Additive skew is also an issue. Since
delays are bounded, each component has a range of times in which it could complete its cycle,
each so component must take into account the possible completion times of the previous cycles.
For instance, if a circuit contains 12 subcomponents linked in series, each of which takes be-
tween 2 and 3 time units each to complete, then the first subcomponent will take somewhere
between 2-3 time units to complete a cycle. Processing data through both subcomponents 1 and
2 will take between 4-6 time units. By the time the data makes its way through the series of
all 12 subcomponents, anywhere from 24-36 time units have elapsed. The uncertainty of this
accumulating skew leads to severely reduced throughput rates.(author?) [1] Additionally, if the
buffer insertion method is used, the addition of all those buffers increases the time it takes for
each computation to complete, again reducing throughput.

4.1.2. Burst mode. Burst mode takes synchronous objects and hooks them up in an asynchro-
nous manner. To avoid transition hazards, each component is clocked so that operations happen
in bursts; within that burst, operations can happen in any order. Since each component runs
on a different clock, every subsection of a circuit can run at its top speed. Then again, you’re
clocking the entire circuit, so burst mode kills any dreams of low-power operation, but you avoid
the clock propagation problem, since you’re using many localized clocks.

4.1.3. Micropipelines. Micropipelines are bounded-delay datapaths controlled by delay-insensitive
circuits. Think of them as queues for transitions; each set of data can proceed through each sec-
tion of a pipeline only after the preceding data set has finished with it. This is done by putting a
small register before each section of pipeline and hooking it through a write enable which is trig-
gered by the transitions made by the previous data set finishing up. This buffering automatically
lets you filter out hazards. Unfortunately, a first-in-first-out (FIFO) system like this is only as fast
as the slowest element currently in the queue, and is only useful for shuffling data sequentially
through an operation; it can’t respond to feedback mid-cycle or combine sets of data.

4.2. Delay insensitive. This is the type of model that we will use in this lab. With the delay-
insensitive model, delays are no longer bounded. Both gates and wires have arbitrary delays;
signals could come in at any speed at any time, or not at all. Since a delay-insensitive model, by
definition, does not contain a maximum time bound, advocating the delay insensitive model over
the bounded delay one results in the amusing statement that removing information to a system
is actually beneficial to its performance.5

Since no upper bound is placed on delays, completion detection must be implemented to tell the
circuit components when to proceed. Telling the difference between a long transition (high............
low!) and no transition at all (high, high) can be done in a variety of ways. In each of these ex-
amples, “sender” refers to the component upstream in the data flow, and “receiver” refers to the
component that receives the sender’s output as its input.

4.2.1. Two-phase handshaking: A one-act play. [Curtain up. Mist rises in the distance.]

Sender: I’m done! Here is data!

Receiver: Got it!

[The end.]

5Since removing the upper bound allows us to wait an arbitrarily long time between transitions, it actually does help.

COMPUTER ARCHITECTURE LAB 4 - ASYNCHRONOUS CIRCUIT DESIGN 5

4.2.2. Four-phase handshaking: A one-act play. [Curtain up. Sender and Receiver are squab-
bling in the playroom.]

Sender: I’m done! Here is data!

Receiver [irked]: I know.

Sender: I know you know, so I’m going back to my original state. Nyah!

Receiver: I know you know I know, so I’m going back to my original state too. So there!

[The end.]

4.2.3. Using two wires per bit. Under the traditional schema, a single wire is used for a single bit;
it represents either a 0 or a 1 depending on whether its value is high or low. Under this schema,
two wires are needed to represent a single bit. If a transition occurs on one wire, the data value
is 0; if a transition occurs on the other, it’s a 1. If we are using a four-phase handshake model
with this data model, the wires are all returned to their original state at the end of a handshake.
Thus, a transition only occurs on the rising edge of each signal. The falling edge is the reset
phase of the four-phase handshake. This particular phenomenon makes circuit design with a
four-phase handshake easier than a two-phase handshake.

4.2.4. Bundled data. Bundled data is a term used to describe the addition of an enable to each
component. Every component then has one wire per data input bit and an extra wire as an
enable; the receiver reads the data only when the sender puts a transition on the signal wire.
These components can be adapted from traditional synchronous design by simply converting the
enable from the rising edge of the clock to whatever input is given by the signal wire.

4.2.5. Muller-C elements. A Muller-C element is any component where the output signal(s) will
transition only after all the input signals transition. They are used heavily in asynchronous
circuit design to avoid transitions crossing and causing hazards. It is important to note that
conventional two-input AND, OR, and XOR gates are not Muller-C elements and thus cannot be
used in asynchronous design without significant conversion, whereas buffers and NOT gates are
Muller-C elements and may be used.

One last snafu: To avoid transitions catching up to each other and causing errors, any two-
in one-out gate needs to be a Muller-C element (all inputs must transition before the output
transitions) and things like two-input AND, OR, and XORs don’t fit the bill. Delay-insensitive
circuits with only single-output gates can only use C-elements, wires and single-input gates, so
if you want AND, OR, and XOR, you need to work with multiple-output gates.

4.2.6. Quasi delay insensitive and speed independent. As the name implies, the quasi delay
insensitive model is very similar to the delay insensitive model mentioned above. The only differ-
ence between them is that the quasi delay insensitive model assumes all forks are isochronous.
This means that wire delays are still arbitrarily set, but constrained such that the output of a
forking wire will reach both of its destinations simultaneously. A logical equivalent to quasi delay
insensitive circuits with a slightly different description is the speed independent model, which
uses arbitrary gate delays and no wire delays.

Part 2. The Lab

5. INTRODUCTION

In this lab, you will implement a 32-bit ALU using asynchronous logic.

Your 32-bit ALU should have the following characteristics

• Unbounded delay model
• Two wires per bit
• A two or four phase handshake model
• SLT
• XOR

COMPUTER ARCHITECTURE LAB 4 - ASYNCHRONOUS CIRCUIT DESIGN 6

• Full adder/subtractor
• Overflow, Carry Out, and Zero flags

Additionally, you will be required to design and implement a single asynchronous AND gate in a
language of your choosing, preferably behavioral verilog.

6. TOOLS

Instead of using Verilog HDL as the tool of choice for this lab, you will be using Balsa, an
asynchronous logic design tool. It abstracts away the two-wire data model and the handshake
models, and has the capability to generate both generic verilog code, and verilog code for the
Xilinx brand of FPGAs.

It is available here: Balsa Project Home Page http://www.cs.manchester.ac.uk/apt/projects/
tools/balsa/

The Balsa manual is available here: The Balsa Manual ftp://ftp.cs.man.ac.uk/pub/amulet/
balsa/3.4.3/BalsaManual3.4.2.pdf

REFERENCES

[1] Hauck, Scott (1995). Asynchronous Design Methodologies: An Overview. Proceedings of the
IEEE, 83, pp. 69-93.

[2] Brunvand, Erik. Introduction to Asynchronous Circuits and Systems. University of Utah pre-
sentation.

[1] Wikipedia (2005). Asynchronous circuit. http://en.wikipedia.org/wiki/Asynchronous_circuit,
accessed 11 Dec. 2005.

[4] Furber, S.B (1993). Breaking Step - The Return of Asynchronous Logic. IEEE Review, 39, pp.
159-162.

[2] van Berkel, Kees, & Josephs, Mark, & Nowick, Steven (1999). Scanning the Technology:
Applications of Asynchronous Circuits. Proceedings of the IEEE, 87, pp. 223-233.

[6] Manohar, Rajit, & Chandy, K. Mani (2004). Delta-Dataflow Networks for Event Stream Pro-
cessing. Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Systems.

[7] Kearney, David, & Bergmann, Neil (1995). Performance Evaluation of Asynchronous Logic
Pipelines with Data Dependant Processing Delays. 2nd Working Conference on Asynchronous
Design Methodologies.

[9] Hulgaard, Henrik, & Burns, Steven, & Borriello, Gaetano (1995). Testing Asynchronous Cir-
cuits: A Survey. Integration, the VLSI Journal, 19, pp. 111-131.

