
1

Digital Asynchronous VLSI Final Project
Douglas Ellwanger, Scott McClure, Christopher Stone, and Jonathan Tse

I. I NTRODUCTION

As described in [4], currently, the majority of VLSI circuits
are synchronous. In other words, the timing characteristics of
each individual block of logic are known and predicable within
a margin of error. With this timing information, logic blocks
in a synchronous system can be controlled by a global clock,
where each tick of the clock represents the start of a computation,
and each tock represents the completion of a computation. This
method offers a number of benefits, the most promient of which
being global knowledge of completion. Since each tick-tock cycle
is no shorter than the longest computation time of each logic
block, the global clock is a de-facto indicator of completion of
any portion of the circuit. Additionally, synchronous systems offer
a measure of resistance to noise input. By only evaluating the
results of a computation at a tock signal from the clock, we can
allow the output of a logic block to fluctuate between each tick
and tock with no ill effects.

Of course, there are always tradeoffs. The frequency of the
clock signal is dependent on the physical characteristics of the
circuit, because the period of the clock cannot be less than the
longest computation time of any logic block. Thermal effects,
changes in geometry, and changes in relative size of components
can change the computation time for a logic block, so the selection
process for the clock frequency must take all of these effects
into account. Additionally, the clock signal itself is typically a
high-frequency square waveform which must be routed to all
parts of a circuit in order to be effective. Due to the effects of
parasitic capacitance, as circuit complexity and size increase, so
does the amount of current required to drive the clock signal.
The high frequency and increased current result in increased
power dissapation regardless of whether or not there is any real
computation going on at all.

A solution to the downsides of synchronous circuits is to
remove the clock entirely and design an asynchronous circuit.
The responsibility for detecting computation completion now falls
to each individual logic block. While this results in increased
complexity at the logic block level, along with the requiste
additional delay, each logic block is now delay-insensitive [4].
Rather than waiting for a clock signal to signify completion,
each logic block can begin computation as soon as its inputs
are valid. This also means that the logic block with the longest
computation time will no longer determine the computation time
of the entire system, which means that asynchronous systems
often follow average-case completion time scenarios as opposed
to the worst-case of a synchronous system [4].

One downside to asynchronous computation is newfound sus-

ceptiblity to noise. In a clocked system, the inputs and outputs
are evaluated on the falling and rising edges of the clock signal;
whatever happens in between edges can be transient and noisy,
so long as the signals have resolved on each clock edge. As a
result, asynchronous systems need to have some resistance to
these types of signals, where the voltage is either a transient
or somewhere between logic levels. The asychronous design
methodologies outlined in [2], [3] assume that voltage changes
are monotonic, so adopting a two-wire protocol solves most of the
issues. In a two-wire protocol, there are two separate logic lines,
one to represent the true and the other to represent false. Each bit
value can then be represented by raising the appropiate logic line
high, while keeping the other low, and bits can be distinguished
by lowering both logic lines to give a neutral state. A further
assumption is that at no time should both lines be high.

This additional complexity of the two-wire protocol and com-
pletion detection mechanism requires a handshaking protocol.
Each logic block needs knowledge of whether or not the previous
block has completed. In order accomplish this, every communca-
tion between blocks has a handshaking protocol. A typical 4-
phase handshake protocol between two blocks A and B, where A
precedes B in the logic circuit, essentially looks like this1:

1) B raises the handshaking line between A and B to indicate
that it is ready to receive data

2) A raises its output lines to the correct values that it has
computed

3) B acknowledges the receipt of data by lowering the hand-
shaking line

4) In response to the lowering of the handshaking line, A
returns its outputs to the neutral state

A. Project Overview

Our final project for ENGR3430: Digital VLSI is an exploration
of asynchronous circuit design. In order to accomplish our goal,
we designed several types of 32-bit wide full adders, both
synchronous and asynchronous. By comparing the performance of
synchronous and asynchronous adders over a wide range of input
data and environmental conditions–temperature, supply voltage
fluctuations, etc–we hope to qualitiatively determine which is
more robust and efficient. We’ve chosen three different adder
topologies–carry ripple, carry lookahead, and Kogge-Stone–and
implemented each using both synchronous and asynchronous
logic, making sure to use static CMOS for both logic types.

1The 4-Phase handshaking protocol was taken from [2], [3]



2

II. A DDERS

A. Carry Ripple

The carry ripple adder is the simplest possible adder to imple-
ment. It is completely naive and greedy in computing sums, as
each carry out signal is reliant on the carry in signal preceding
it. The asynchronous variant of the carry ripple does make minor
improvements, resulting in a the average-case computation time
[2], [3], [1].

A synchronous ripple-carry full adder is very simple, involving
only five 2-input gates: 3 NAND and 2 XOR, for a total of 32 tran-
sistors. An asynchronous ripple-carry full adder is significantly
more complex, as described in [2], [3], [1]. In our implementation,
taken from [2], [3], [1].

The asynchronous ripple carry is broken up in to four distinct
pieces. Two of the pieces handle the sum true and false states,
and the other two handle the carry out true and false. Part of the
reason for the increased transistor count is the two-wire bus; every
bit now needs two transistors. Some of this cost is made up for in
the pull-up stack. Looking at the adder implmentation in [2], [3],
[1] we see that the pull-up stack is either just the carry bits or
the si signal, which represents the acknowledge signal from the
logic after the entire 32-bit full adder chain. Instead of having to
invert the pull-down logic, the pull-up logic is only the logic that
returns the outputs to the neutral state. It is worth nothing that
the output is the logical not of the desired output. Normally this
would be fixed with a simple inverter, but in this case, we need to
help guard against transients so we introduce some stateholding
elements by way of a feedback inverter.

Note that the implementation of the asynchronous carry-ripple
requires a control signal for si, which can be tied to the validity
of the output of the adder, i.e. is the output neutral or a real value.
This can be accomplished with a NOR and an inverter.

B. Carry Lookahead

The carry lookahead represents the next step of advancement
beyond the carry ripple adder. Operating under the assumption
that all inputs to the entire 32-bit adder arrive simultaneously,
the carry lookahead has logic that enables it to make decisions
regarding the carry out for a particular adder cell without knowl-
edge of the carry in. For example, if both inputs are 1, then the
carry out will definitely be a 1, regardless of what the carry in
is. On the other hand, if the inputs satisfy an XOR (i.e. only
one of them is true) then the carry in will be propogated to the
carry out. Looking at an adder cell somewhere in the middle of
the 32-bit adder chain, it is now possible to compute the carry
out without knowing about the carry in, thus reducing the overall
execution time, since adder cells far away from the initial carry
in can compute without having to wait.

In our implementation, the carry lookahead logic happens in
blocks of four adder cells to allow for easy propogation across
blocks of four adder cells. Four cells is the optimum number
since it allows for a significant jump across a large number
of adder cells, while remaining simple enough to implement in

transistors. Since the actual carry propogate time is shortened due
to both the capability to “jump over” adder cells as well as the
generated carry out signals–the ones independant of carry in–the
carry lookahead adder represents a significant leap in efficiency
over the carry ripple adder.

C. Kogge-Stone

The Kogge-Stone adder has the shortest computation time of
static CMOS adders. It gains this speed through use of many
layers of generate propogate logic. Each layer of generate and
propogate logic forwards to the next layer, but significantly more
towards the most significant bit of the adder. This topology offers
the same adder cell skipping advantages of the carry lookahead
adder, but can skip more than four cells due to the layer topology.
The layer topology also keeps the logic complexity down, at the
cost of a massive amount of wiring.

APPENDIX A: CELLVIEW BREAKDOWN

All the cellviews are called<addername>nopad

Dellwanger

All cellviews are under the library “async.”

• 1bitmux4 – 1-bit 4to1 mux
• 8bitmux4 – 8-bit 4to1 mux
• addercell – asynchronous carry ripple adder cell without the

staticizer
• async-addercell – asynchronous carry ripple adder cell with

the staticizer
• biginverter – big inverter
• blackeven – synchronous Kogge-Stone black cell, even row
• blackodd – synchronous Kogge-Stone black cell, odd row
• equals32 – cell that tests two 32-bit inputs for equality
• grayeven – synchronous Kogge-Stone gray cell, even row
• grayodd – synchronous Kogge-Stone gray cell, odd row
• grayoddpolyout – synchronous Kogge-Stone gray cell, poly

for outputs
• koggenopad – synchronous Kogge-Stone layout with test

bench, but no pads
• ks12connector – synchronous Kogge-Stone interconnect be-

tween row 1 and row 2
• ks12connectornop – synchrounous Kogge-Stone intercon-

nect between row 1 and row 2, no poly
• ks23connector – synchronous Kogge-Stone interconnect be-

tween row 2 and row 3
• ks23connectornop – synchronous Kogge-Stone interconnect

between row 2 and row 3, no poly
• ks34connector – synchrounous Kogge-Stone interconnect

between row 3 and row 4
• ks34connectornop – synchrounous Kogge-Stone intercon-

nect between row 3 and row 4, no poly
• ks45connector – synchronous Kogge-Stone interconnect be-

tween row 4 and row 5



3

• ks5connector – synchronous Kogge-Stone connect from row
5 out

• ksadder – nothing
• ksadder16 – synchronous Kogge-Stone 16-bit adder
• ksadder32 – synchronous Kogge-Stone 32-bit adder
• ksadder32split – synchronous Kogge-Stone 32-bit adder

split down the middle for ease of layout of chip
• ksadder4 – synchronous Kogge-Stone 4-bit adder
• nand2small – 2-input NAND, small size
• nequals4 – 4-input NEQ
• nor2nocont – 2-input NOR, no poly contacts
• pgcell – propogate generate cell for synchronous Kogge-

Stone
• pgconnector – connector for the propogate generate cell of

the synchronous Kogge-Stone
• pgconnectorlast – connector for the last propogate generate

cell of the synchronous Kogge-Stone
• shiftreg – 2-bit shift register
• skinnyinverter – a skinny inverter
• staticizer – inverter with quarter strength feedback for state

holding
• sum – sum stage of the synchronous Kogge-Stone
• xor2short – 2-input XOR short size
• xor2shortinv – 2-input XOR short size with an inverter

Cstone

All cellviews are under the library “final.” We got lazy and
only put the useful ones below.

• decoder32good – 32-bit decoder
• look ahead32 – 32-bit carry lookahead adder

Smcclure

All cellviews are under the library “async,” and are all pretty
much self-explanatory for a 32-bit asynchronous Kogge-Stone.

Jtse

Jon did pretty much all of his work in other people’s folders,
or copied individual cells back and forth.

REFERENCES

[1] Martin, A. J. “Asynchronous Datapaths and the Design of an Asynchronous
Adder.” California Institute of Technology, 1991

[2] Martin, A. J. “Synthesis of Asynchronous VLSI Circuits.” 1991
[3] Manohar, R. “Asynchronous VLSI Systems.” 2003
[4] Martin, A. J. “Tomorrow’s Digital Hardware will be Asynchronous and

Verifed.” California Institute of Technology, 1992


