The reflexive CHAM and the join-calculus

C)C_,C«.\.M(— 'd‘\‘_n'v\ CML(U{‘—3

Jason Reed

- JDC_QWL.

October 17, 2001

A-—{’ +We “'\)\{h lwu() all ‘("PL ‘bf\?u:/% (_(,LCU.LS ot & \oum.}c' \{a(\‘xbc,{-;/(,,f
Com e se A MWM\ Cou com thowl 56 CF a5 « "avﬁ souwp sF
“Mewed” P e thort -

4 The cHAM ~ "~ T

The Chemical Abstract Machine can be thought of as a model of

computation for concurrent calculi, for instance the mw-calculus.

“Intuttively, the state of a system is ltke a chemical solution
wn which the floating molecules can interact with each other
according to reaction rules; ¢ magical mechanism stirs the

solution, allowing for possible contacts between molecules”

e The reaction rules are specified before any computation begins.
They form a signature of sorts of what calculus we are dealing
with. For instance, for the m-calculus, we would have a rule
that would specity that reading molecules and writing

molecules can synchronize and pass information.

e We can think of the rules as catalysts of reactions, and also as

K places where molecules must travel to react. /

2

@8L wc.h\C-/La Sf—bk ’hOLUHﬁ/

~— e n wnt shradhed
indroduce o cdoe 50 c.owdr—{m fo \
5--(La,dnw[(o CQH}, A \ \PD \/(/ &D S(A_Um Heon crowA
T wie struchad cewyruen
= sy shbt

«oed =~ 7 Problems with the CHAM

r) a‘“a,ad{ (AM@“F\\
If we must specify one, fixed set of reaction rules at the outset, then

e All communication is constrained to this fixed set of ‘reaction

sites’. (Fournet and Gonthier say “Catalysts are bottlenecks”)

e All the expressivity of pattern matching we want to have in the
core calculus must be present in this fixed set of rules, which
means that actually matching patterns against molecules in the
CHAM may become complicated. (Fournet and Gonthier say
“Catalysts clog up”)

S oo
r// F'e‘“"-’("”"“” Ll/ Jo e LLW‘(/L
M w _;f m [Wl "o
RN—) ! S 2 wnkhvd”

-~

o /

-

We solve both of these problems by permitting molecules to add

The reflexive CHAM

new reactions to their environment. (
rccdla e LQSQ(‘J

Example:

D .= ready(printe%b(file) = printer(file)
- F def D in ready(laser)|job(1)|job(2)

Severd sk
ekl

= D I ready(laser) \job<1>|job<2>r)
4

=D I—\ready(laser>,job(l>}job<2>
©M\7 Mokl -
0w\« = DN ready(laser)|job(1), job(2)

€ Dl . u .
ihi\:_ o lowle oy laser(1), job(2)

We’ll see later the benefits of this style of model.

-

-

The reflexive chemistry (1)

But first, a formal definition:

—

Processes P = z(v)
def Din P
P |P;

Join patterns J 1= x(?)
J1|J2

Definitions D = J=P
DAND

-

The reflexive chemistry (2)

rv(x(v)) = U
rv(Ji|J2) = ru(Jr) Wru(Js)
dv(z(v)) = {z}
dv(Ji|J2) = dv(J1)Udv(Js)
dv(J = P) = dv(J)
dv(Dy AN Dy) = dv(D1)Udv(Ds)

The reflexive chemistry (3)

\J) fo(J = P) = dv(J)U(fv(P)—rov(J))
fv(Dy AN Dy) = fo(D1)U fo(Ds3)

fo(x(v)) = {x}Uv
fv(def Din P) = (fv(P)U fv(D))— dv(D)

fo(P1|P2) = fo(P1)U fo(P)

Operational Semantics (1)

All rules operate on higher-order solutions R - M which consist of
a multiset M of processes (“molecules”) on the right and a multiset
R of definitions (“reactions”) on the left. There are reversible
structural “heating/cooling” rules (reversibility is denoted by =)

and one irreversible reaction rule (red).

o /

-

Operational Semantics (2)

~

(str-join) REM,P|lQ = REM,P,Q Pl

(str-and) R,DAEFM = R,D,EF-M

(str-def) REM,def DinP = R,Dog, b M, PUPCZ,Vl e

(red) R,J=PFM, Jo,, —R,J=P+M,Po,,
Side conditions:

-

e dom(og,) C dv(D) and substitutes for these variables distinct,

fresh names. Fresh means
rng(oqy) N (fv(R) U fo(M) U fu(def Din P)) = 0.

o dom(o,,) C ru(J).

/

/ m o ad har /)“OL‘ZW(/‘ Com Mu vt S /.DJL \

The Join Calculus (1)

We can think of the CHAM as computational model derived from
process calculi like the m-calculus. We can go in the opposite
direction and produce a process calculus, the join calculus, from
the reflective CHAM. The terms of the join calculus are just the
molecules of the reflexive CHAM, and the structural equivalence
and transition rules correspond to the reaction rules of the CHAM.

However, we're going to look at a smaller version of the full join
calculus, the core join calculus. It turns out we lose no expressive

power.

o /

10

-

The Join Calculus (2)

/ ato’ J\]ow y defonho?

P :=x(u) | (P1|Ps) | (def x(u)|y(v) = P;in Ps)
PIQ = QP

PI(QIR) = (PIQ)IR

Pldef Din@Q = defDin(P|Q) ol debnios
def Dindef D'inP = defD'indefDinP .., thute . cen]
P=,P = P=P " anukr
P=@Q = P|R=Q|R¢ conprveec S

R=5SP= = defJ=RinP=defJ= Sin(

/

11

-

~

The Labelled Transition System

We define a labelled transition relation —s where ranges over

D U {7}. The relation is the smallest such that c\ P“‘h‘“[“" Sl

A
D

e For all D = z(u)|y(v) = R, we have z(s)|y(t) — Rl[s/z,t/y].

o IfP—(S—>P’, then

P|Q — P'|Q

def Din P - def Din P’ (if fv(D) N dv(§) = 0)
def §in P — def §in P’ (if § # 1) Can frarsidng
Q-5Q (fP=Qand P'=Q)

12

Relating the Reflexive CHAM to the Join
Calculus

Lemma 1.1 The structural congruence = is the smallest
congruence that contains all pairs of processes P, () such that

- P=*F Q. The silent transition relation — contains exactly the
pairs of processes P, () up to = such that = P— Q).

72‘1 OAMJMM,? - /CIM-‘IM- Vé" 7%] 5}(#{,!«0\

o /

13

Ve — -

|V

Dh L b«

/ hay gt and sk \

Programming in the¢ Join Calculus

Everyone’s favorite example; the re cell.

def get(k)|s{v) = r(v)|s(v)
def mkcell{vy, ko) = | A set{u, k)|s(v) = k()|s(u) |in...

in s#(vg)|ko(get, set)
inihed volw N wset o sead J,JLIJJ- oA
Intuitively mkcell(vg, ko) =~ let x = ref vy in kg except that instead

of a process kg with a free = in it, we have a ‘message’ on channel
ko containing the get and set operations. We can make use of these
operations (that is, ‘read on the channel’) by making another
definition, say def v(g,s) = P inside the ... above, and then
invoking mkcell(vg,v). The variables g and s are bound in P, and
they will be instantiated with the fresh get and set operations

when the reaction rule of mkcell is invoked.

o /

14

4 h

Encoding the A-calculus (1)

Everyone’s other favorite example.

Call-by-name: Y,
CWMWH (b oy
T ~ . 1
[x], = x(v)f / e g i
Az T, = defr({z,w)= [T],inv(k)
[T U], = defx(u)=[U],in cvelit 55 @Y ant fe.

def w(k) = w(z,v)in [T],, de~bl & oot ()
s

“r T A/
The interpretation |[T'], means that T" should send its value on

channel v. A value is a channel x which, if sent (x,w), uses = to
look up an argument and sends the result of applying itself to the

argument on w. To lookup the value of x, send z to z, and the

value of x will be sent on z.

o /

15

HO&XJ\ G\ %’17) JC?) HV

A 0o 5 o o 2D

4 N

Encoding the A-calculus (2)

Parallel Call-by-value:

A ——
[z]o = vlz)
Az T, = defk(z,w)= [T], inv(k)
[T U]y, = deft(k)|u(w)= x{w,v)in[T],|[U],

This differs in that instead of sending a channel which serves up
the unreduced argument, we send the actual argument in the
‘application request’. We can do this in the definition of application
because we wait until both of the terms in the application have
converged to a value.

NS ' /

16

4 N

Comparison with the w-calculus

We can think of the join calculus is an asynchronous version of the
m-calculus, except with the restrictions that

e All binding happens with one construct, the definition.

e Synchronization only happens with defined names; Processes
cannot pass messages over free names. Even though one can
write on a channel with a free name, communication only

occurs when a defined rule executes.

e LFor every defined name, there is exactly one replicated read. If
we think of the calculus in a distributed setting, this means
that for every defined name, there is exactly one place where

synchronization can occur for that name.

o /

17

The Asynchronous m-calculus

P:=(P|Q) | newuin P | z(u) | z(u).P | lx(u).P

—> no Suu\«w:/&.v-f

18

-

T —talpte—
L[a\m{ e sty (erlevte- =2) O cAethr

oA
yom cededn ey L pl_a.mw/c/fu.wu{ /

Fq//.\ﬁ_

Naive Representation of the m-calculus

[P]Q]

[new x in P]
[z (v)]
[z(v).P]

[1(v).P]

[P]= /@]

def z,(v,, vi)|xi (k) = K{vo,v;) In[P]
To(Vo, Vi)

def k(v,, v;) = [Plrinz; (k)

def k(v,, v;) = z;(k)|[P]rinz; (k)

19

4 N

No good!

For instance, [Z{a)|Z(b)|z(u).g(u)], can’t make any transition, even
though Z(a)|z(b)|x(u).y(u) can in the w-calculus. This is because
we have no enclosing new xin. .. to provide the definition that

allows synchronization to occur.

Additionally, this encoding is not fully abstract in the sense that it
is not robust given an arbitrary concurrent context that the
encoded process lives in. Even if we make sure all of our free names
have been appropriately defined, a channel we are reading on might
be written to by some malicious process, with the message being a
free name. Again, if we try to do anything to that free name, we
become stuck!

~ Doetn 't gove TM abchoedi

o /

20

The Equator

A tool we will use to patch up this problem is the equator

M7, =lw(u).y(u)|y(u).z{u)

This is an asynchronous m-calculus program which conflates the
two channels x and y. It M, is in the ‘solution’, then no process

can tell the difference between them.

o /

21

GG

Firewalls

def zo(vy, v;)) |z (k) = K{vo, ;)

indef x,(v,, v;) = p{v,, v, x¢) in P
Prlxe{xs, ;)| P]

def p(z,, Ti, k) = Pylk(yo, ¥i)|[[M7]] in P
MIE [+ &, [P] -] (for z1,...,2, = fv(P))

22

Full Abstraction Result
Theorem 1.2 Q =, R iff £[[Q] -] = E[|R]]

23

The Reverse Encoding

We can also embed the join calculus in the mw-calculus. This isn’t

too surprising considering our claim that the join calculus is just

the m-calculus with some restrictions on how things can

communicate.

-

24

Nailve representation of the Join Calculus

[P,
[z{v)] 5
[def z(u)|y{v) = PinQ];

[Pl;11Ql;
z(v)
new x, y in

((tz(u).y(v).[P];)[Q]5)

25

-

There is the same problem as with the previous encoding; it’s not

Still no good!

robust up to arbitrary contexts. We pull the same sort of trick to

fix things.

We define a relay process
R, =lz(v). new v, in 7 (v, v)|g(ve)

and firewall definitions

R[P] = newrin (Ir(z,z.).Rs .. |P)
ErP] = newzin(R, . |P)
erlpl = RIELL--E P (for zy,.. 20 = fu(P))

-

~

26

Full Abstraction Result
Theorem 1.3 P = Q iff E7[[P];] =~ E7[[Q];]-

27

4 N

Join Calculus vs. the world

Fournet and Gonthier seem to believe that there are serious

problems with some of the calculi we’ve seen. For instance,

e Synchronization is non-local. Reads and writes must join up
somehow, but we are potentially forced to search the whole

universe for a and a to synchronize.

e Either there are a few simple primitives, (7-calculus) or else
many primitives hardcoded into the language, for
communication, choice, locations, agents, etc. With few we may
lose the ability to naturally express certain constructions, but

with many the language becomes complicated to reason about.

o /

28

-

The Join Calculus Way

e Locality comes from replacing synchronization

a(x).Plal{v).Q

in the m-calculus style synchronization with the more general
notion of join patterns. This means that all forms of
communication (reactions) have a unique place (catalyst)

where they occur.

Reflection comes from allowing processes to define new reaction

rules. Pattern matching is a very expressive yet simple way of

encoding synchronization constraints.

/

29

4 N

But is it really so great?

We do have embeddings going both ways, so we're still left with the

problem of subjectively deciding which formulation is more natural.

If we try to examine the DRCHAM rules, the idea of definitions

qua locations seems elegantly used in the rule
commt z(?) | J= PF-—-F-| J= PF (@)

but there are a whole host of other mobility and location
primitives, with many scoping rules. It doesn’t seem that defined
reaction rules capture everything we intuitively think of concerning
locations, and they also don’t appear to be general enough to

permit the mobility primitives to be naturally definable.

o /

30

Finally...

Is garbage collection still problematic? It seems so. Names defined
at one site can still float around other sites, even though they
cannot react there. (although they can participate as the arguments
of reactions)

o /

31

