Response Surface Methods in Optimization

- A nonlinear Response Surface $R(x)$ is a continuous nonlinear multivariate approximation to $f(x)$.
- $R(x)$ has also been called a “response surface” or a “surrogate model”.
- Response surfaces can also be used with other optimization algorithms including heuristics like GA.

handout 11-28-11
Why Use Response Surface approximation Methods?

• A Response Surface approximation \(R(x) \) can be used as part of an efficient parallel optimization algorithm in order to *reduce the number of points at which we evaluate* \(f(x) \), and thereby significantly reduce computational cost.

• Our Response Surface approximation algorithm searches for the global minimum.

• The term “surrogate” is used to imply that the response surface is replacing the true function \(f(x) \).
Combining Evolutionary Algorithms with Surrogate Response Surface Methodology for Improved Efficiency for Costly Functions

Rommel Regis

and Christine Shoemaker

This is a summary (with additional graphs and explanations) of a paper that is in the journal:

This journal is the second highest cited journal in Computer Science-Artificial Intelligence in the world

Web of Science 5 year impact factor: 7.621

Here we talk about application to the “Evolution Strategy” (ES) algorithm.
Initial use of Surrogate Response Surface with Heuristic

• This paper was the first use of a Radial Basis Function (RBF) with a (meta) heuristic.
• I think it was the first use of any non-quadratic response surface to a heuristic.
• Heuristics are typically not practical for computationally expensive functions because they require so many evaluations.
• Surrogate Response surface plus heuristics are a viable way to solve some global optimization problems with computationally expensive functions.
Experimental Design with Symmetric Latin Hypercube (SLHD)

• To fit the first Response Surface approximation we need to have evaluated the function at several points.

• We use a symmetric Latin Hypercube (SLHD) to pick these initial points. (This is a experimental design to distribute points in space evenly- you do not need to know SLHD algorithm.)

• The number of points we evaluate in the SLHD is
\((d+1)(d+2)/2 \), where \(d \) is the number of parameters (decision variables).
One Dimensional Example of Experimental Design to Obtain Initial Surrogate Response Surface approximation.

Objective Function $f(x)$

Costly Function Evaluation (e.g. over .5 hour CPU time for one evaluation).

x (parameter value-one dimensional example)
Response Surface approximation with Initial Points from Experimental Design

In real applications x is multidimensional since there are many parameters (e.g. 10).
Update in Response Surface approximation with New Evaluation

Update done in each iteration for Response Surface approximation for each algorithm expert.

Response Surface approximation is a guess of the function value of $f(x)$ for *all* x.
Coupling Response Surface approximation Methods to Heuristic Methods

- Evaluation of the objective function $f(x)$ is in some cases very COSTLY in CPU time.
- Heuristic Methods tend to require many function evaluations of $f(x)$ in comparison to other methods.
- We can combine Response Surface approximation with heuristic methods to improve efficiency.
Response Surface approximation
Optimization for Evolutionary Algorithm

1. Use a “space filling” experimental design (e.g. SLHD) to select a limited number of evaluation points.
2. Make an approximation of the function (with Radial Basis Function splines) $R(x)$ based on experimental design points. Randomly generate M parents.
3. Generate N children from M parents using an evolutionary algorithm (e.g. Genetic Algorithm or ES).
4. Pick the W children $\{x_i\}$ that have the best $R(x_i)$.
5. Evaluate the real function $F(x_i)$ at each of the W children. Pick the best M of these W children to be the new parents.
6. Fit an updated response surface $R(x)$ based on the new values of $F(x_i)$ in 5.) plus all the previously evaluated points.
7. Stop if reach maximum number of iterations. Otherwise go to Step 3.
Graph Notation

• ES = evolutionary strategy
• ES plus is
 – SLHD=with symmetric hypercube initially
 – QR= response surface by quadratic approximation and initial SLHD
 – RBF=response surface with radial basis function (RBF) and initial SLHD
Notation in Graphics results

M, N, W

- ESRBF (10, 8, 50, 20)—means you have
 - M=8 parents,
 - you generate N=50 offspring that are evaluated by the response surface R(x)
 - You evaluate expensive function F(x) the best W= 20 based on R(x)
 - You pick the best M=8 to be the parents based on the values of F(x)

The first number (10) relates to the size of the SLHD so you can ignore it.
Variables in Graphs: (M,W)-ES (no response sur) (SLHD, M,N,W) for ES RBF or ESQR

1. Use a “space filling” experimental design (e.g. SLHD) to select a limited number of evaluation points.
2. Make an approximation of the function (with Radial Basis Function splines) $R(x)$ based on experimental design points. Randomly generate M parents.
3. Generate N children from M parents using an evolutionary algorithm (e.g. Genetic Algorithm).
4. Pick the W children $\{x_i\}$ that have the best $R(x_i)$.
5. Evaluate the real function $F(x_i)$ at each of the W children. Pick the best M of these W children to be the new parents.
6. Fit an updated response surface $R(x)$ based on the new values of $F(x_i)$ in 5.) plus all the previously evaluated points.
7. Stop if reach maximum number of iterations. Otherwise go to Step 3
Summary on Response Surface approximation Optimization for Costly Functions

• Response Surface approximation methods have potential to reduce computational effort significantly for application of heuristics to optimization of continuous functions where function evaluation is “costly”.

• There are several existing approaches to the use of response methods. Initial results indicate our new methods are good both in serial and in parallel.
Parallel Optimization

- A major focus of our research is on using response surface methods for optimization of costly functions in parallel.
- Especially when combined with parallelized costly function evaluation, parallel optimization can lead to efficient use of a large number of processors.
- This algorithm is the focus of a second NSF grant (from the Computer and Information Science Directorate) on parallel optimization.
Our Response surface is based on Radial Basis Functions:

\[m_k (x_k + s) = \sum_{j=1}^{\gamma} \lambda_j \phi(\|s - y_j\|_2) + p(s), \]

\[\phi: \mathbb{R}^d \rightarrow \mathbb{R}, \]

a univariate function

\[p(s) = \sum_{i=1}^{q} v_i \pi_i (s) \in \rho_{d-1}^n, \]

a “polynomial tail”.

The \(y_j = F(x_j) \) are points for which the value of \(F \) is known. \(s \) is any point on the response surface. Everything else is given or computed.
Response Surface approximation is a guess of the function value of $f(x)$ for \textit{all} x.
Two Dimensional Example: \textbf{Cubic} RBF Surrogate Based on 6 points

\[
m(x_k + s) = \sum_{j=1}^{8} \lambda_j \left\| s - y_j \right\|_2^3 + \nu_1 + \nu_2 s_1 + \nu_3 s_2,
\]
Two Dimensional Example: **Gaussian RBF Surrogate**

\[m(x_k + s) = \sum_{j=1}^{8} \lambda_j e^{-\|s-y_j\|^2/2} + \nu_1 + \nu_2 s_1 + \nu_3 s_2, \]
Example: Multiquadric RBF Surrogate

\[m(x_k + s) = -\sum_{j=1}^{8} \lambda_j \sqrt{1 + \left\| s - y_i \right\|^2} + v_1 + v_2 s_1 + v_3 s_2, \]

Cornell Univ.: Wild and Shoemaker
Why Do We Like RBFs?

1. Radial Basis Functions (RBF) offer a nonlinear interpolation model with a linear (in n) number of function evaluations

2. Attractive theoretical and numerical properties

3. Works well with scattered data (e.g. points computed in iterative searches of optimization algorithm)

4. We can add previously evaluated points to the trust region calculation since RBF is more flexible about location of points than a quadratic model.
Methodology

• Pick an evolutionary algorithm, e.g. GA, ES, DDS.

• To evaluate the cost function $f(x)$ for a population of size, get an approximation of $f(x)$ by using the value of the response surface $RS(x)$.

• Based on the $RS(x)$ values, evaluate the function $f(x)$ (costly evaluations) at a subset A of the P_{max} points. A is the set of the M points that have the best $RS(x)$ values.

• Use the points in A to produce the offspring. For GA, this means that selection of parents and crossover and mutation is only on the elements of A that have had costly function evaluations.
Local Response Surface Approximation

• In this evolutionary application we will use a local approximation that is based on a fixed number of the closest points around the function value being estimated.

• In other applications we try to approximate the entire surface using all the points or try to build a mathematically defined “trust region”
Notation

• \((\mu, \lambda)\)-ES— is an evolutionary strategy that has \(\mu\) parents and generates \(\lambda\) children that.

• \((m, \mu, \lambda, v)\)-ES is an evolutionary strategy that has \(\mu\) parents and generates \(\lambda\) children of which only \(v\) will be evaluated by costly function evaluation.

• \(m\) is the number of points used in a symmetric latin hypercube design.

• (ES has a sophisticated strategy for doing mutations to generate the children, which we won’t discuss here.)
Continuation of Methodology

- Generate an updated Response Surface by combining the previous computed values of $f(x)$ with the newly computed values of $f(x)$ and fitting the surface.
- Use the current M members of the population to generate P_{max} offspring.
- Repeat previous steps by now picking the best M offspring based on the updated $R(x)$ values from the P_{MAX} members of the population.
Psuedo Code for ESGRBF

1. Generate experimental design points (SLHD) and denote this set of points by E_i.
2. Evaluate the objective function at the points in E.
3. Set $t=0$.
4. Set $P(t)$ to be the subset of points in E with the lowest function values.
5. Evaluate the Objective Function at the points in $P(t)$.
Psuedo Code continued

6. While not terminate do
 a. $P''(t) = \text{mutate } P(t)$ (could also do crossover if desired)
 b. estimate the value of each element of $P''(t)$ from \textit{local} response surface approximation using the $k=(d+1)(d+2)/2$ nearest previously evaluated points.
 c. $P'''(t)$ is defined to be the set of points in $P''(t)$ with the v best values based on the local response surface.
 d. Evaluate (expensive function simulation) at all the points in $P'''(t)$
 e. $P(t+1)$ is the union of $P'''(t)$ and the set of elite parents.
 f. t is updated to be $t+1$
end
The problem here is to compute the cheapest way to inject water and substrate to degrade contaminant at groundwater monitoring wells over time with flowing water and contaminant (similar to video).
Groundwater Bioremediation Problem, m=91
(Fig. 4)

Comparison of ES, ES-SLHD, ESQR and ESRBF on the GWB12 Test Function (m = 91)
Plot is in terms of Numbers of Function Evaluations- Why?

- The cost to do the optimization calculations including building the surfaces is relatively small (e.g. seconds or about a minute).
- The cost to do the (simulation model) evaluations is assumed to be large (e.g. many minutes or hours or maybe even days).
- Hence to evaluate the methods for computationally expensive problems we are primarily interested in evaluation numbers.