Crowding is used both to determine which individuals to keep from the last allowable front (F3 in graph) AND in Tournament Selection to generate new offspring

NSGA-II

Step 1 Combine parent and offspring populations and create \(R_t = P_t \cup Q_t \). Perform a non-dominated sorting to \(R_t \) and identify different fronts: \(F_i \), \(i = 1, 2, \ldots, \) etc.

Step 2 Set new population \(P_{t+1} = \emptyset \). Set a counter \(i = 1 \).

Until \(|P_{t+1}| + |F_i| < N \), perform \(P_{t+1} = P_{t+1} \cup F_i \) and \(i = i + 1 \).

Step 3 Perform the \texttt{Crowding-sort}(\(F_i, \leq \)) procedure (described below on page 236) and include the most widely spread \((N - |P_{t+1}|) \) solutions by using the crowding distance values in the sorted \(F_i \) to \(P_{t+1} \).

Step 4 Create offspring population \(Q_{t+1} \) from \(P_{t+1} \) by using the \texttt{crowded} tournament selection, crossover and mutation operators.
The overall crowded distances of the four solutions are:

\[d_1 = 0.63, \quad d_3 = \infty, \quad d_b = \infty, \quad d_d = 0.12. \]
Board Distance for Points in Fronts 1 & 2 (p. 238)

Table 21: The fitness assignment procedure under NSGA-II.

<table>
<thead>
<tr>
<th>Solution</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.66</td>
<td>1.41</td>
<td>0.66</td>
<td>3.65</td>
<td>third</td>
<td>first</td>
<td>(\infty)</td>
</tr>
<tr>
<td>a</td>
<td>0.21</td>
<td>0.24</td>
<td>0.21</td>
<td>5.90</td>
<td>first</td>
<td>third</td>
<td>(\infty)</td>
</tr>
<tr>
<td>e</td>
<td>0.58</td>
<td>1.62</td>
<td>0.58</td>
<td>4.52</td>
<td>second</td>
<td>second</td>
<td>0.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.89</td>
<td>0.31</td>
<td>6.10</td>
<td>third</td>
<td>second</td>
<td>0.63</td>
</tr>
<tr>
<td>3</td>
<td>0.22</td>
<td>0.56</td>
<td>0.22</td>
<td>7.09</td>
<td>first</td>
<td>fourth</td>
<td>(\infty)</td>
</tr>
<tr>
<td>b</td>
<td>0.79</td>
<td>2.14</td>
<td>0.79</td>
<td>3.97</td>
<td>fourth</td>
<td>first</td>
<td>(\infty)</td>
</tr>
<tr>
<td>d</td>
<td>0.27</td>
<td>0.87</td>
<td>0.27</td>
<td>6.93</td>
<td>second</td>
<td>third</td>
<td>0.12</td>
</tr>
</tbody>
</table>

So the numbers computed on previous slide are imput to this table.
Figure 140 The cuboids of solutions 1 and d. The cuboids for solutions 3 and b extend to infinity.

Figure 141 The new parent population P_{t+1} joined by dashed lines.

The crowding distance is the SUM of the LENGTH of 2 adjacent sides of the cuboid.
Left-most column is combination of parents P_t and children Q_t. Middle column is the combined population sorted into fronts. P_{t+1} is the new population of parents.

Figure 137 Schematic of the NSGA-II procedure.
Figure 142 The population after 50 generations with the NSGA-II without mutation.
NSGA Solution after 50 generations (without elitism or mutation)

Figure 117 The NSGA distributes solutions near the Pareto-optimal region at the 50-th generation.
NGSA with Mutation 500 generations

Figure 120 Population at the 500-th generation with an NSGA having a mutation operator.
500 Generations with Elitism with and without Mutation

Figure 143 The population after 500 generations with the NSGA-II without mutation.

Figure 144 The population after 500 generations with the NSGA-II with mutation.
NSGA after 500 generations (without Mutation)

Figure 118 The NSGA distributes solutions near the Pareto-optimal region at the 500-th generation.
Two types of Errors

Poor Distribution

Figure 183 Convergence is good, but distribution is poor (by Algorithm 1).

Poor Convergence

Figure 184 Convergence is poor, but distribution is good (by Algorithm 2).
Conclusions on Multi Objective Optimization

• Most problems are multi objective problems
• We usually use single objective methods (and perhaps incorporate other objectives as constraint) because
 - Multi objective tends to be much more computationally expensive than single objective optimization
 - It can be complex to explain multi objective results (which can be helped by visualization methods)
 - It can be difficult to quantify all the objectives.
Conclusions on Multi Objective Optimization

• If the feasible space is not convex, nonlinear programming or other methods involving changing weights between objectives, may miss part of the Pareto front.

• NSGA-II is an effective way to find the Pareto Front, but it does take a large number of objective function evaluations.

• Part of the goal for Pareto Front calculation is to find points on (or very close to) the true Pareto Front and also not to have big gaps between those points.
Conclusions on Multi Objective

- The inclusion of Elitism via Deb’s method adds complexity to the code.
- The inclusion of Elitism appears to significantly improve performance.
Genetic Programming

- Genetic Programming applies the concept of Genetic Algorithms to Automatic Programming.
- Automatic Programming refers to algorithms that generate a computer program to do a specific task.
- Why would you want to use Automatic Programming?
• References to this area include:
First Example: Using Genetic Programming to find Relationship between radius and orbit of planet

- Suppose that you want to find the relationship between the average distance of a plant from the sun (A) and the orbital period of the planet (P).
- You are given the following data

<table>
<thead>
<tr>
<th>Planet Name</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus</td>
<td>.72</td>
<td>.61</td>
</tr>
<tr>
<td>Earth</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Mars</td>
<td>1.52</td>
<td>1.84</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.20</td>
<td>11.9</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.23</td>
<td>29.4</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.1</td>
<td>83.5</td>
</tr>
</tbody>
</table>
Genetic Programming uses Parse Trees rather than binary strings for decision variables.

Example of a parse tree for \((A^3)^{1/2} = \text{SQRT}(*A(*AA)))\) (Lisp)

This is an example of a simple program.
Contents of Parse Tree

• The tree consists of

• **Functions** - the set of commands available for building solution expressions

• **Terminals** - the set of data (includes decision variables) for the solution expression

• The following shows more examples of parse trees representing a possible solution to the problem.
Three possible solutions to the relationship between P and A

$$A \ast [(A \ast A) - \sqrt{A}]$$

Fitness \Rightarrow

Fitness \Rightarrow

$$A \div [(A \div A) \div (A \div A)]$$

Fitness \Rightarrow

Fitness \Rightarrow

Fitness cases:

<table>
<thead>
<tr>
<th>Planet</th>
<th>A</th>
<th>Correct Output (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus</td>
<td>0.72</td>
<td>0.61</td>
</tr>
<tr>
<td>Earth</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Mars</td>
<td>1.52</td>
<td>1.84</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.20</td>
<td>11.9</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.53</td>
<td>29.4</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.1</td>
<td>83.5</td>
</tr>
</tbody>
</table>
Crossover in Genetic Programming

Parents

Offspring

Crossover Point
Genetic Programming is ...

• Essential aspects of GP
 - Dynamic length structures
 - Evaluate by Execution
 - Syntax Preserving Operators

• Non essentials of GP
 - Parentheses (Lisp Syntax)
 - Lisp Commands
 - Tree Structures