
“Differential Evolution”
For Global Optimization of Continuous Variables
(winner in an international competition among evolutionary algorithms in 1996)
Journal Paper Reference

• Since that time Storn et al. have written a book on this method and other books have also been written on the method.

• You are not required for the course to read any materials on Differential Evolution beyond what is in the lecture notes.
Fig. 1.2. A simple classification scheme of optimization methods: position of differential evolution.
Problem

• Assume you want to find the value of the D dimensional real vector x^* such that

• $f(x^*) = \text{Maximum } f(x)$

• Where $L \leq x \leq H$ (vector constraint on each component)
Characteristics of Differential Evolution

- Population based, real valued decision vector
- In generating a child from a parent, some of the components of the parent vector remain unchanged in the child.
- For the components that are changed, the new values depend on a weighted linear function of the same components in other individuals in the parent population.
- Advantage that it is a relatively simple code. (C Code is given in Storn & Price 1997 paper.)
DE Algorithm Parameter
these values are selected by the user

• F— a constant used in “mutation” process.
 \(0<F<2\) Typical value is 0.5

• NP- size of population. Typical value is 20

• CR- a constant used in “crossover” Typical value is 0.1
Mutation Example for 7 dimensional decision vector

Target vector containing the parameters $x_{ji,G}$, $j=1,2, \ldots, D=7$

Mutation vector

Crossover

Not Changed

Changed

D is dimension of decision vector
Differential Evolution - Definitions

- Subscript i is for the i^{th} individual decision vector and j is for the element number in the vector. G is for the generation number.

- $x_{jiG} =$ original parent (D dimensional vector)

- $v_{jiG} =$ “mutant” (based on weighted average of several other elements of the population)

- $u_{jiG} =$ individual after mutation and crossover. Some of the elements are same as x and some of the elements are the same as v.

- In the paper description, dropping the j subscript is used to denote the D-dimensional vector. So x_{jG} is the decision vector with D elements.
Mutation

- Pick three random (integer) numbers (uniformly distributed in [1,...,NP], where NP is the population size. Call them \(r1, r2, and r3 \).

- Then we generate a mutant from a combination of \(x_{r1,G}, x_{r2,G}, and x_{r3,G} \).

- \(v_{i,G+1} = x_{r1,G} + F \cdot (x_{r2,G} - x_{r3,G}) \) (vector addition)

- The next figure shows an illustration for D=2 of the 2 dimensional parent vector \(x_{1,G} \) and the other parent vectors \(x_{r1,G}, x_{r2,G}, and x_{r3,G} \).
Mutation in 2 Dimensions

Figure 1. An example of a two-dimensional cost function showing its contour lines and the process for generating $v_{i,G+1}$.
Crossover

• The purpose of Crossover is to increase the diversity of the set of decision vector in the Child population (since the mutation alone is only a linear combination of parent population)

• $u_{i,G}$ is the D dimensional “trial” vector after both mutation and crossover.

• $u_{i,G}$ is determined by D random number called $\text{randb}(j)$, $j=1,...,D$ and an additional random number called $\text{rnbr}(i)$. The $\text{randb}(j)$ are uniform randomly distributed among real numbers in $[0,1]$ and are independent of random numbers selected for the other $u_{k,G}$, k not equal to i.

• $\text{rnbr}(j)$ is uniformly distributed among the integers $1,...,D$ and it indicates one of the elements of the mutant that is definitely carried over to the u vector. This is to insure that u does not equal x in all elements.
Crossover

• Then for the j^{th} element $u_{ji,G}$ in the vector $u_{i,G}$

 $u_{ji,G} = v_{ji,G}$ if $\text{randb}(j) \leq \text{CR}$ or if $j=\text{rnbr}(i)$ (4a)

 $u_{ji,G} = x_{ji,G}$ otherwise (4b)

Hence as is shown on (repeated) next figure slide. the components of the decision vector $u_{i,G}$ are a mixture of components from $v_{i,G}$ (mutated vector) and $x_{i,G}$ (original parent vector) and that mixture is determined by the random variables.
Original vector crossover

\[\Delta_{i,G} \]

\begin{align*}
 j = 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
\end{align*}

Muta6on

\begin{align*}
 \text{Target vector containing} \\
 \text{the parameters } x_{ji,G}, \\
 j=1,2, \ldots, D=7
\end{align*}

\[
 D \text{ is dimension of decision vector}
\]

mutant

\[V_{i,G+1} \]

\begin{align*}
 j = 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
\end{align*}

Crossover

\[
 \text{Mutant vector}
\]

mutant +

\[U_{i,G+1} \]

\begin{align*}
 j = 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
\end{align*}

\[
 \text{Not Changed}
\]

\[
 \text{Changed}
\]
• Note that there is a (independent identically distributed) random variable \(\text{randb}(j) \) for each component \(j \).

• Note also that there is a random variable \(\text{rnbr}(i) \) to guarantee that at least one component \(\neq \text{rnbr}(i) \) is perturbed.

• For example if \(\text{CR}=0 \), there will be at least one component that is perturbed.
Example for 7 dimensional decision vector

Target vector containing the parameters $x_{ji,G}$, $j=1,2, \ldots, D=7$

Mutant vector

Trial vector

D is dimension of decision vector
Target vector containing the parameters \(x_{ji,G} \), \(j=1,2, \ldots, D=7 \)

Mutant vector

Trial vector

\[
\begin{align*}
&\text{randb}(3) \leq CR \\
&\text{randb}(4) \leq CR \\
&\text{randb}(6) \leq CR
\end{align*}
\]
SELECTION

Reproduction Success based on Fitness

- So far the fitness of a vector has not been incorporated.
- Now we do a tournament selection to determine if the original ith parent will become a child or if the ith trial vector becomes a child.
- The fitness of \(f(\text{parent}) = f(x_{i,G}) \) versus \(f(\text{trial}) = f(u_{i,G}) \) is compared and the most fit version is put in the child population. So since this is a maximization problem
- If \(f(u_{i,G}) > f(x_{i,G}) \), then the trial vector \(u_{i,G} \) is added to the child population. Otherwise the original parent \(x_{i,G} \) is added to the child population.
- Then the child population becomes the parents for generation \(G+1 \).
• Hence the process is that we are going to compare one vector x_{iG} in the population against a combination of three other vectors ($x_{r1,G}, x_{r2,G},$ and $x_{r3,G}$) in the population.

• The paper compares some solutions as given in the following figures.
Comparison of DE to BGA (binary GA) and EASY algorithm on 15 problems

Table 2. Averaged number of function evaluations (nfe) required to find the
global minimum. NA stands for “not available”.

<table>
<thead>
<tr>
<th>$f_i(x)$</th>
<th>D</th>
<th>nfe</th>
<th>DE-Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BGA</td>
<td>EASY</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>NA</td>
<td>27,111</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>NA</td>
<td>104,520</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>NA</td>
<td>9,626</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>NA</td>
<td>39,333</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>3,608</td>
<td>6,098</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>25,040</td>
<td>45,118</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>66,000</td>
<td>26,700</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>361,722</td>
<td>77,250</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>19,420</td>
<td>13,997</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>53,860</td>
<td>57,628</td>
</tr>
</tbody>
</table>
Comparion of DE to SDE (Stochastic Differential Equations for Global Optimization)

Table 3. Averaged number of function evaluations (nfe) required to find the global minimum.

<table>
<thead>
<tr>
<th>(f_i(x))</th>
<th>(i)</th>
<th>SDE</th>
<th>DE/rand/1/bin</th>
<th>(\text{DE-Settings})</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>3,184</td>
<td>503</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>17</td>
<td>26,893</td>
<td>499</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>18</td>
<td>241,215</td>
<td>3,137</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>19, (\beta=0.5)</td>
<td>8,755</td>
<td>4,854</td>
<td>40</td>
<td>1.0</td>
</tr>
<tr>
<td>19, (\beta=1.0)</td>
<td>97,761</td>
<td>4,428</td>
<td>40</td>
<td>1.0</td>
</tr>
<tr>
<td>20</td>
<td>5,393</td>
<td>927</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>21, (D=2)</td>
<td>84,782</td>
<td>722</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>21, (D=3)</td>
<td>19,041</td>
<td>1,073</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>21, (D=4)</td>
<td>18,942</td>
<td>1,424</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>22, (D=5)</td>
<td>18,433</td>
<td>2,084</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>22, (D=8)</td>
<td>136,061</td>
<td>3,347</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>22, (D=10)</td>
<td>49,701</td>
<td>4,165</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Value</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>23, D=2</td>
<td>9,492</td>
<td>715</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>23, D=3</td>
<td>19,114</td>
<td>1,093</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>23, D=4</td>
<td>35,139</td>
<td>1,499</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>24, D=5</td>
<td>53,398</td>
<td>1,882</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>24, D=6</td>
<td>15,534</td>
<td>2,295</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>24, D=7</td>
<td>16,542</td>
<td>2,701</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>25</td>
<td>6,751</td>
<td>273</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>26</td>
<td>3,402</td>
<td>650</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>27</td>
<td>10,286</td>
<td>621</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>28, n= -m=1</td>
<td>4,791</td>
<td>907</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>28, n= -m=2</td>
<td>3,037</td>
<td>812</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>28, n= -m=3</td>
<td>5,028</td>
<td>778</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>28, n= -m=4</td>
<td>14,710</td>
<td>754</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>28, n= -m=5</td>
<td>51,285</td>
<td>751</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>28, n= -m=6</td>
<td>17,610</td>
<td>761</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>29</td>
<td>15,102</td>
<td>7,053</td>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>48,802</td>
<td>1,266</td>
<td>30</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Conclusions

• The differential evolution algorithm described here has the advantage of being relatively simple and easily coded.

• The results presented in the 1997 and the 1996 competition are favorable to DE. (Do you have some comments on those results?)

• More variants of DE are being developed, but it is still not as widely used as GA.
Algorithm 1 Famous Differential Evolution

Require: \(D \) – problem dimension (optional)
\(NP, F, Cr \) – control parameters
\(GEN \) – stopping condition
\(L, H \) – boundary constraints

Initialize population \(Pop_{ij} \leftarrow rand_{ij}[L, H] \) and Evaluate fitness \(Fit_j \leftarrow f(Pop_j) \)

for \(g = 1 \) to \(GEN \) do
 for \(j = 1 \) to \(NP \) do
 Choose randomly \(r_{1,2,3} \in [1, \ldots, NP], r_1 \neq r_2 \neq r_3 \neq j \)
 Create trial individual \(X \leftarrow S(r, F, Cr, Pop) \)
 Verify boundary constraints if \((x_i \notin [L, H]) \) \(x_i \leftarrow rand_i[L, H] \)
 Select better solution \((X \text{ or } Pop_j)\), and update \(iBest \) if required
 end for
end for