Genetic Algorithms

Probably the Most Popular Heuristic Algorithm

because it sounds cool!

(but not necessarily the best for some applications)
Genetics and Genetic Algorithms

We are all interested in our own genetics so perhaps that is one of the reasons Genetic Algorithms are so popular.
Genetic Algorithms

- The heuristic search method Genetic Algorithms is inspired by the mechanism Nature uses to “improve” populations.

- Among animals, each parent has genes.

- The genes of a child are directly related to the genes of the parents.

- The ability of an organism to survive (fitness) depends directly on the child’s genes.

- In the algorithm analogy, “genes” are decision variables.
Plant on the left is unaltered and the right has been genetically altered so the plants have different genes.

Both plants are the same age. Algorithm analogy is that right side is a “good” solution and left side is a “bad” solution.
Population Genetics Suggests Heuristic

• “Survival of the fittest” means that children whose genes give high fitness are more likely to survive and produce more children.

• In this way over time, genes with characteristics beneficial for survival appear in an increasing fraction of the population and hence “fitness” of the population improves.

• It is an analogy of this principle that is the basis for the heuristic called “Genetic Algorithm”.
Definition

- Gene - basic genetic element
- Chromosome - a collection of genes
- Allele - The values a gene can take (e.g. we usually have alleles = 0 or 1).

Examples: Let S be a binary string of length 4 so
- Chromosome example are 1010, 0110, etc.
- Genes are the bits in the string
- Alleles are 0 or 1

For most heuristic optimization cases one chromosome = “genotype” = “phenotype”
- (The actual biological distinction is more complex.)
Definitions (continued)

• For genetic algorithms, the objective function is called “Fitness” which we will call $F(S)$ (not $\text{Cost}(S)$).

• We want to maximize the fitness $F(S)$

 (if you have a minimization problem, flip the sign of the output of the cost function)

• An iteration of the GA algorithm is called a “generation”
Biggest Difference Between Genetic Algorithm and SA

- Simulated annealing carries the single “curS” from one iteration to the next.

- Genetic algorithms carry many solutions from one iteration to the next.

- These many solutions are called a “population”

 - You can think of a population as a vector of current S’s.
 - This allows you to carry many solutions to improve robustness of the algorithm.
Introduction to Genetic Algorithms (cont.)

- **The primary operations in Genetic Algorithms are**
 - **Crossover** (this involves switching locations of substrings within a binary string)
 - swapping genes with other solutions
 - **Mutation** (this involves changing the value of one value (e.g. one gene) in the binary string based on a probability distribution)
 - forced permutation to explore the search space
Characteristics of Genetic Algorithms (GA):

- They require an effective representation of the decision variables in the form of a chromosome (encoded string). For “binary coded GA”, this is a string of 0’s and 1’s.

- In each iteration (generation) there are multiple members of population (\(\text{CurSi}, I=1,\ldots,M \))

- The method is stochastic (i.e. they search using probabilistic functions)

- The method does not know when to stop. Usually set maxtime.
Characteristics of Genetic Algorithms (continued)

• (Like other heuristics) the algorithm only requires the **objective function value** (**S**). (It doesn’t require derivatives, continuity, etc.)

 \[\Rightarrow \text{essentially the cost(s) we are used to also called } \text{EC(s)} \]

• However, knowledge of problem structure can possibly be incorporated into the encoding of the string or into the reproductive process to improve performance.

• Initially we will discuss decision variables that are **binary strings** (e.g. 0110010) for GA
Basic structure of genetic algorithms

• 1. Randomly generate an initial “population”. \((\text{CurS}_j)\) for all \(j = 1,\ldots,M\).

• 2. Compute \(F(\text{CurS}_j)\) for all \(j = 1,\ldots,M\). (Objective Function)

• 3. Generate “children” which are the members of the population in the next generation. This is done by applying crossover and mutation, which are influenced by the values of the \(F(\text{CurS}_j)\). Every child has two parents.

• 4. The population of children becomes a population of parents and go to step 2 unless a stopping criterion has been satisfied.
Crossover (Roulette)

- In order to generate \textbf{N} children you will perform the following:

 - Randomly select one parent with a probability that is proportional to its fitness \(F(S_i) \).

 \(\Rightarrow \) selection of the fittest parents

 - Then randomly \textbf{select} a second parent also with a probability that is proportional to the fitness of the parent.

 - For one point crossover: \textbf{pick a crossover point}. This can be done \textbf{randomly} although there may be some restrictions discussed later.

 \(\Rightarrow \) usually uniform random

 - Then switch the portions of the binary strings that occur before the crossover point between the parents.
Generating Children with *Crossover*

- The simple crossover procedure is:
 - Parent 1: 0 1 1 0 0 | 0 0 1
 - Offspring 1: | 0 1 0 0 0 | 1 0 1
 - Parent 2: 1 0 0 1 0 | 1 0 1
 - Offspring 2: | 1 0 0 0 0 | 0 0 1

Note: in some cases you may choose to have only one offspring.
Another method for binary strings is Multipoint Crossover. Where multiple crossover points are randomly generated. (Two crossover points are in the example above.)

Note: you could generate more children here, but we are assuming we don’t.

⇒ really, this is just another way of representing the statement “swap a specific subset of bits.”
Mutation

- Mutation produces incremental random changes in the offspring by randomly changing allele values. Typically a mutation “flips” a value (e.g. 0 to 1) when S is a binary string.
- Mutation produces new characteristics.
- Without mutation, there can be some values you can never reach.

⇒ This helps you explore the search space
Maximize $F(S) = S^3 - 60S^2 + 900S + 100$

(Same problem solved with Simulated Annealing.)

$F(S) = S^3 - 60S^2 + 900S + 100$

- S is a scalar integer represented in binary form
- The decision vector is a binary string with 5 elements.
- The total number of times the objective function is evaluated is 10 (same as for SA example)
- Table 1.12 (next slide) is initial population, which is 5 randomly generated strings) (note $P(\text{select})$ is proportional to fitness $F(x)$)
Basic structure of genetic algorithms (Repeated Slide)

• 1. Randomly generate an initial “population”. (CurS_j) for all j= 1,…,M.

• 2. Compute fitness F(CurS_j) for all j= 1,…,M. (Objective Function)

• 3. Generate “children” which are the members of the population in the next generation. This is done by applying crossover and mutation, which are influenced by the values of the F(CurS_j). Every child has two parents.

• 4. The population of children becomes a population of parents and go to step 2 unless a stopping criterion has been satisfied.
• In the next slide there is a probability of selection of a parent.

• We will discuss later how this probability is selected.
Initial Population of N=5

<table>
<thead>
<tr>
<th>No.</th>
<th>String</th>
<th>x</th>
<th>f(x)</th>
<th>P[select]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10011</td>
<td>19</td>
<td>2399</td>
<td>0.206</td>
</tr>
<tr>
<td>2</td>
<td>00101</td>
<td>5</td>
<td>3225</td>
<td>0.277</td>
</tr>
<tr>
<td>3</td>
<td>11010</td>
<td>26</td>
<td>516</td>
<td>0.044</td>
</tr>
<tr>
<td>4</td>
<td>10101</td>
<td>21</td>
<td>1801</td>
<td>0.155</td>
</tr>
<tr>
<td>5</td>
<td>01110</td>
<td>14</td>
<td>3684</td>
<td>0.317</td>
</tr>
<tr>
<td></td>
<td>Average fitness</td>
<td></td>
<td>2325</td>
<td></td>
</tr>
</tbody>
</table>
Selection of Parents and Crossover and Mutation positions (Assumes selection based on probability weighted selection. Weight for parents depends on their fitness.

- Parent 1: 10011
- Parent 2: 00101
- Crossover point 4
- Mutation position 4

From table 1.12
All 5 Children (Offspring) created after first iteration (generation) with Population of 5

How did this do in comparison to Simulated Annealing? Would you expect GA to work this well in general with few evaluations of $f(x)$?

<table>
<thead>
<tr>
<th>Step</th>
<th>Parent 1</th>
<th>Parent 2</th>
<th>Crossover point</th>
<th>Mutation?</th>
<th>Offspring String</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>NNNYN</td>
<td>10001</td>
<td>2973</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>NNNNN</td>
<td>01010</td>
<td>4100</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>NNNNN</td>
<td>01101</td>
<td>3857</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>NYNNN</td>
<td>11101</td>
<td>129</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>NNNNN</td>
<td>00100</td>
<td>2804</td>
</tr>
</tbody>
</table>

Average fitness: 2773

Take only the first child

Fitness converged very quickly
Maximize Cost (S) = S^3 - 60 S^2 + 900 S + 100.
S is a scalar integer represented in binary form

Initial temperature is 500, S_o=1011, Cost (S_o)=2399

Review: Simulated Annealing Approach to Same Problem

![Table 1.5 Second Attempt: T=500](from Simulated Annealing handout with 7 evaluations)
Selection Methods Picking Parents for Crossover

• The method used in the previous table is **Roulette**. Compute the p_i, the probability of parent S_i being selected is

$$P[\text{select}] = \text{probability of an individual } i \text{ being selected as a parent. } P[\text{select for } S_i] = P_i.$$

$$P_i = \frac{F(S_i)}{\sum_{j=1}^{n} F(S_j)} \Rightarrow \sum_{j=1}^{n} P_j = 1.$$
All Children (Offspring) created after first iteration (generation) (Repeated Slide)

In this example, parents are picked at random by "Roulette" method.

<table>
<thead>
<tr>
<th>Step</th>
<th>Parent 1</th>
<th>Parent 2</th>
<th>Crossover point</th>
<th>Mutation?</th>
<th>Offspring String</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>NNNYN</td>
<td>10001</td>
<td>2973</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>NNNNN</td>
<td>01010</td>
<td>4100</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>NNNNN</td>
<td>01101</td>
<td>3857</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>NYNNN</td>
<td>11101</td>
<td>129</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>NNNNN</td>
<td>00100</td>
<td>2804</td>
</tr>
</tbody>
</table>

Average fitness: 2773
Alternative Method for Crossover is **Tournament Selection**

1. Let all parents have an equal probability of being selected (e.g. $p_i = 1/M$, where M is number of individuals in the population).
2. Pick two parents S_i and S_k at random.
3. Select the parent with the higher fitness to be the first parent.
4. Repeat the process starting with step 1 to select the second parent (if 2 offspring/parent).

Next you select a crossover point and mutation to generate the new child. Closer to the way parents are selected for some species.